Roche Lobe Shapes for testing MOND-like Modified Gravities
نویسندگان
چکیده
Dark Matter (DM) theories and mass-tracing-light theories like MOND are by construction nearly degenerate on galactic scales, but not when it comes to the predicted shapes of Roche Lobes of a two-body system (e.g., a globular cluster orbiting a host galaxy). We show that the flattening of the Roche lobe is sensitive to the function μ(g) in modification of the law of gravity. We generalise the analytical results obtained in the deep-MOND limit by Zhao (2005, astro-ph/0511713), and consider a binary in the framework of a MOND-like gravity modification function μ(g) or a general non-Keplerian gravity g ∝ R . We give analytical expressions for the inner Lagrange point and Robe lobe axis ratios. The Roche lobe volume is proven to scale linearly with the true mass ratio, which applies to any μ(g), hence mass-tracing light models would overpredict the Roche lobe of a DM-poor globular cluster in a DM-rich host galaxy, and underpredict the size of a DM-richer dwarf satellite. The lobes are squashed with the flattening ∼ 0.4 in the strong gravity and ∼ 0.6 in the weak gravity; a precise measurement of the flattening could be used to verify the anisotropic dilation effect which is generic to MOND-like gravity. We generalise these results for extended mass distribution, and compare predicted Roche radii with limiting radii of observed globular clusters and dwarf galaxy satellites.
منابع مشابه
Roche Lobe Shapes in MOND-like Modified Gravity
We consider how to break the near degeneracy between dark matter and baryonic MOdified Newtonian Dynamics (MOND). We show that the Roche Lobes of a two-body baryonic system (e.g., a globular cluster orbiting a host galaxy) are sensitive to modifications of the law of gravity. We generalise the analytical results obtained in the deep-MOND limit by Zhao (2005, astro-ph/0511713), consider in the f...
متن کاملRoche Lobe Sizes in Deep-MOND Gravity
MOdified Newtonian Dynamics (MOND) is evolving from an empirical to a decent theory respecting fundamental physics after Bekenstein (2004) showed that lensing and Hubble expansion can be modeled rigourously in a Modified Relativity. The degeneracy of MOND with Dark Matter can be broken if we examine the non-linear MONDian Poisson’s equation in detail. Here we study the effect of tides for a bin...
متن کاملModified Newtonian Dynamics: success and problem on globular cluster scale
Many past attempts to kill MOND have only strengthened the theory. Better data on galaxy velocity curves clearly favor MOND (without fine-tuning) over cold dark matter. The usual critism on the incompleteness of classical MOND has spurred a Modified Relativity (MR) by Bekenstein. After outlining cosmology and lensing in MOND, we review MOND on small scales. We point out some potential problems ...
متن کاملRoche Lobes in the Second Post-newtonian Approximation
Close binary systems of compact stars, due to the emission of gravitational radiation, may evolve into a phase in which the less massive star transfers mass to its companion. We describe mass transfer by using the model of Roche lobe overflow, in which mass is transferred through the first, or innermost, Lagrange point. Under conditions in which gravity is strong, the shapes of the equipotentia...
متن کاملar X iv : a st ro - p h / 05 10 11 7 v 1 5 O ct 2
I briefly highlight the salient properties of modified-inertia formulations of MOND, contrasting them with those of modified-gravity formulations, which describe practically all theories propounded to date. Future data (e.g. the establishment of the Pioneer anomaly as a new physics phenomenon) may prefer one of these broad classes of theories over the other. I also outline some possible startin...
متن کامل